Lentila dublu concava de umplut cu apa pentru gratar solar cu focalizare pe placa de grafit
Pentru a beneficia de soarele dogoritor dar si de un gratar fără a consuma combustibili fosili se poate construi o llentilă concava ce va focaliza razele solare intr-un punct de maxim ce va cadea pe o placa de grafit. Aceasta va conduce caldura in intreaga placa si se va utiliza pentru gatit, gratar, copt ardei, vinete si prepara la cald orice alte alimente. După utilizare se poate goli sticla concava. Este de preferat ca aceasta sticla concava sa aiba un sistem de reglare dar un mecanism automatizat de reglare ar fi net superior.
O altă alternativă este construirea unei parabole concave tip oglinda, din staniol sau alt material ce poate focaliza fascicolul de lumină intr-un punct. Sunt construite deja astfel de gratare si au fost efectuate chiar probe pentru topirea metalelor.
Dispozitive de acest fel sunt construite sub forma unor turnuri si a unui camp de parabole ce sa trimita fascicolul de lumina spre schimbatorul de căldura ce determina evaporarea apei si pentru a utiliza aburul pentru producerea de energie electrica, pentru condensarea lui si obtinerea apei potabile .
Astfel de instrumente pot fi utilizate pentru incalzirea locuintelor pe timpul iernii cand este rece afara dar totusi este soare. Lumina va fi dirijata prin geam spre un schimbator de caldura, incalzind astfel locuinta. Nu va fi o sursa de incalzire dar va fi totusi un element de suplinire a cheltuielilor cu incalzirea.
La mare , pe plaja, la taarguri ad hoc astfel de gratare pot fi utile deoarece sunt independente de surse de energie, doar să fie soare ca se poate realiza diferite preparate alimentare ce au nevoie de preparare termica.
Autoritatile locale pot pune la dispozitie cetatenilor astfel de gratare in zone de picnic dar si pentru gospodine ce doresc sa gateasca in aer liber.
Exista o multitudine de dispozitive solare de focalizare a luminii pentru prepararea termica a produselor alimentare.
De asemenea pot inova diferite dispozitive cu variatii pentru aceeasi tema pentru o multitudine de aplicatii.
Caut echipa pentru realizarea unui prototip de echipament solar pentru obtinerea Sodiului Na metalic, a Potasiului K , a Magneziului Mg, a Litiului Li dar si a Clorului din topitura de sare . Echipamentul trebuie sa fie portabil , cat mai mic, sa fie destinat pentru mica industrie , pentru ca in tarile sarace sa poata obtine din sare materii prime pentru industria bateriilor. Intregul proces este necesar a fi independent de surse de energie conventionale.
Cu un investitor putem crea o Franciza ărin realizarea de precontracte cu constructorii de baterii, pentru furnizarea materiei prime.
Va recomand cu succes .
In continuare abordarea subiectului cu Bard AI
- Extraction of sodium from molten salt
Sodium can be extracted from molten salt by electrolysis. In this process, the molten salt is placed in an electrolyzer. At the cathode, sodium is reduced to its elemental metal. At the anode, chlorine is oxidized to chlorine gas.
The overall chemical reaction of the electrolysis process of sodium chloride is as follows:
2NaCl → 2Na + Cl2
- Extraction of potassium from molten salt
Potassium can be extracted from molten salt by electrolysis, just like sodium. However, potassium is a more active metal than sodium, which means that it is more likely to be reduced to its elemental metal. Therefore, it is necessary to use an electrolyte with a lower concentration of potassium than sodium chloride.
The overall chemical reaction of the electrolysis process of potassium chloride is as follows:
2KCl → 2K + Cl2
- Extraction of lithium from molten salt
Lithium can be extracted from molten salt by electrolysis, just like sodium and potassium. However, lithium is a very active metal, which means that it is very likely to be reduced to its elemental metal. Therefore, it is necessary to use an electrolyte with a very low concentration of lithium.
The overall chemical reaction of the electrolysis process of lithium chloride is as follows:
2LiCl → 2Li + Cl2
- Separation of chlorine from molten salt
Chlorine can be separated from molten salt by distillation. In this process, the molten salt is heated until the chlorine vaporizes. The chlorine vapors are then cooled and condensed, resulting in liquid chlorine.
Chlorine can also be separated from molten salt by absorption. In this process, the molten salt is passed through an absorbing agent, such as activated carbon. The chloride is absorbed by the absorbing agent, and the chlorine remains free.
The overall chemical reaction of the absorption of chlorine from sodium chloride is as follows:
NaCl + C → Na + Cl + CO
Advantages of using solar energy to extract metals from molten salt
The use of solar energy to extract metals from molten salt has a number of advantages, including:
- It is a renewable and sustainable source of energy.
- It does not produce greenhouse gas emissions.
- It is more energy-efficient than using fossil fuels.
Disadvantages of using solar energy to extract metals from molten salt
The use of solar energy to extract metals from molten salt also has a number of disadvantages, including:
- A significant initial investment is required to build the solar facilities.
- The solar facilities must be located in areas with high solar exposure.
- The efficiency of the solar facilities can be affected by weather conditions.
Conclusion
The extraction of metals from molten salt is a complex chemical process that can be carried out by a variety of methods. The use of solar energy for this process has both advantages and disadvantages.
Comments
Post a Comment